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Abstract

At the start of Phase I, there were several 2D single block codes
and a basic mathematical structure for such codes. During the Phase
I research, the feasibility for general 2D multiblock codes was
firmly established. The mathematical structure of the control point
form of algebraic grid generation (CPF) was found to provide the
essential theoretical framework for the codes and accordingly the
necessary extensions of the CPF were of central importance. These
were considered along with the important software techniques and
the prototype code. Within the scope of software techniques, the
elements of interactive graphics played a central role. The
prototype code provided a good test of important ideas.

Basic Elements for the 2D Multiblock Software

The elements of the CPF are the multisurface transformation and
the Boolean operations for directional assembly. Accordingly, we
shall discuss the multisurface transformation, the assembly, and
the extensions. Then the prototype code that was created will be
discussed; after which, some graphical images from some of the
interactive manipulation will be displayed.

The Multisurface Transformation

The multisurface transformation is based upon an interpolation of
tangent vectors to coordinate curves of a given family. The express
intent is to guide each such coordinate curve across the field by
controlling its tangential direction. Accordingly, the tangent
vectors for each curve are assumed to be known at a succession of
parameter values that start at the bottom of the parametric interval
and end at the top. The interpolation converts the discrete
succession of vectors into a continuous field of vectors. Upon
integration together with the specified end points, the coordinate
curve is obtained.

In the course of the derivation, the discrete tangent vector
sequence is seen to come from the successive tangents of a
piecewise linear curve that connects the end points. For a sequence
of N-1 tangent vectors, there are N-1 piecewise linear links and a
sequence of N points that define the piecewise linear curve. When
the entire family of coordinate curves is considered, the end points
correspond to boundary surfaces and the intermediate points
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correspond to control surfaces. Because the control is most readily
applied in an intuitive manner with the succession of surfaces in
space, the transformation was called the multisurface
transformation.

Aside from the requirements for transverse smoothness, the
basic process can be viewed as indicated here by taking one curve at
a time. Moreover, by viewing a succession of points as a succession
of 0-dimensional surfaces, they can be used to generate a curve. In
this context, the points are most appropriately called control points.
In a hiarchial sense, the control points can be used to generate
curves which in turn can be used to generate surfaces that in turn
can be used to cover volumes, etc. Such hiarchial constructs are
employed in the derivation of the CPF.

The derivation of the multisurface transformation will be given
here in the context of a curve generator from a sequence of control
points. This will have the advantage of notational
simplicity.without a major loss of content. The general case can be
witnessed by mentally replacing the sequence of control points with
surfaces.

The curve is assumed to be given by the position vector

P =(x, y) (1)

which is then given a parameterization by the curvilinear variable .

The succession of tangent vectors are given by derivatives P' at N-1

successive values of . Altogether, the vector field interpolation
problem is posed by

N-I

P'= .Yk() P'(k)
k-=1 (2)

where

Wk( m) 5km (3)

for some partition

1 < 2 <"" < N-I (4)
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of the parametric variable. Upon integration, the coordinate
positions are given by

N-I

P( ) = P1 + I Gk() P'(k)
k=1 (5)

where the first term is the constant of integration and where

GkkGk(4) =  f l k(O) d a 
6

1 (6)

While the first end point is given by the constant of integration, the
second end point is determined by the evaluation

N-I

= P1 + Y Gk(4N-1) P'(k) (7)
k=I

In succession, the partial sums lead to the sequence of control
points that start at the first end point, continue as

P 2 = P1 + GI( N-l)P'(I)

(8)
P3 = P1 + G1(,N-1) P'(l)+k G2(N-) P'( 2)

and end at the last end point as given by (7). Since each equation in
the sequence that defines successive control points adds only one
more term, such terms can be isolated by a subtraction of t,e
previous equation. Since also the isolated terms contain the
specified tangents in the form of derivatives, the subtraction gives
a conversion of the tangent specification into the form of control
points. The consequence is the sequence of N-1 oerivative
conversions
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G I (4- 1) (P2 -P )GI( N-I)

GAN- 1) (P 3 - P 2) (9)G2( N-I)

With these conversions, the derivatives in (5) are replaced to
produce the transformation in terms of control points as given by

N-1 GA)

P( ) = P1 + E -(Pk+1 - Pk} (10)
k=i Gk(N-l)

This is called the multisurface transformation. It is determined by
the sequence of control points (8), the partition of the parametric
coordinate (4), and the interpolation functions (3). The extension
from curves to higher dimensional objects is seen, here, as a
replacement of the control point sequence by a higher dimensional
sequence. That is, controlling objects of dimension n-1 are used to
generate objects of dimension n. For control curves, the generation
is for a surface grid which, in the 2D plane, is simply a system of
coordinates.

The Choice of Interpolation Functions

With the multisurface transformation stated in the general
manner of (10), it remains to choose the interpolation functions of
(3). There is a wide variety of possibilities for this choice. Namely,
any continuous functions that satisfy the Kronecker condition of (3)
will work, and moreover, any scaling of such functions is also valid.
The arbitrary scaling comes from a direct observation of (10). Each
ratio of the G's is a ratio of integrals of the same interpolation
function (but over different intervals). Accordingly, any scaling
factor would appear in both numerator and denominator; thus, would
not affect the transformation.

For precise local control of the curve trajectories, local
interpolation functions are preferred. The simplest choice for
continuous local functions are the piecewise linear functions. While
they are not derivative continuous, their integrals are and
accordingly so is the associated multisurface transformation. For
convenience, these functions are scaled so that that their integrals
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over the entire parametric domain is unity. The consequence is that
the G's in the denominator of (10) all become 1; thus, simplifying the
statement and computation of (10). These interpolation functions
are analytically stated as

___ (2) for 41 :4 < E2

( )2 _;2(11

= 2- 41 0 otherwise

about the first partition point, as

1(k- ) for k-

4+1(~ - k+1( for 4 k1(2

0 otherwise

about the k = 2, ... N-2 internal partition points, and as

___ _ _ -(2 4N 2) for 4N 2 ! 4,! N
NfN- 1(4) -, - - N- (13)

N-I - :N-2 0 otherwise

about the final partition point.

The Control Point Weighted Format

The statement of the multisurface transformation in (10) gives a
close conceptual tie to the process of tangent vector interpolation.
While this is certainly important from a fundamental viewpoint, it
is not as convenient when repetitive algebraic manipulation is
considered. In this latter circumstance, it is preferable to cast it
into a control point weighted format. This is done by expanding (10)
as
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N-1 G)
P(4) = , + I I'Pk+l - Pk)

k=l Gk(N-1)

= +  G 4)(Pi -P) +  G2 )(P3 -P2) +  "+ (PN- PN-1)
GI(N-1) G2(;N-1) GN-(N-1) (14)

and regrouping as follows

P( )= '1- GI(4) P1 + GI() G2() P2

Gl( N-1) + \ 1 GANA)

+ + N2}-: NA GN-A()

+. + G(-) GN-I() PN-1 + PN
GN-2( N-1) GN-I(N-1) GN-I(N-1) (15)

to get

N
P(4) = a k(4) Pk (16)

k=1

where the coefficients can be easily identified from (15).

The Domain of Influence

In this format, the centering is about the control points which
then each have a domain of influence on the locally surrounding grid
points. The center point for each coefficient is its maximum value.
With the exception of the end point (k=1 and k=N ) maximums, the
slopes there are zero. Of the interior coefficients, the ones just
adjacent to the end points ( k=2 and k=N-1) enter the end points with
non zero slope. Each of the remaining interior coefficients ( k=3,4,
.... N-3 ) looks like a bell shaped curve. Each starts at zero slope
and zero value at the second partition point on the negative side of
the maximum and ends with a zero value and slope at the second
partition point on the positive side. Altogether, the coefficient is
non zero over three successive intervals determined by the partition
points. The maximum point appears in the interior of the interval in
the middle. With some modest analysis, the maximum is seen to be
located at the parametric position



8

where

(:k+ - -_k- I)+(4k - 2) (18)

between the (k)th and (k+l)st partition points for k=3,4, ... N-3.
When k=2 or N-2, half of the bell shaped curve is preserved while the
other half is altered. The altered half is on the side of the center
which impinges the boundary. The impingement there occurs at a
value of zero but with a nonzero slope. The center for these nearly
bell shaped coefficients assumes the same form as for the pure bell
shapes (17), but with

";3 - ;I

p (,3 - 41 ) + 2 ( 2 - 41) (19)

and

4N-1 - 4N-3

(N-1 - -:N-3) + 2 ( N-, - N-2) (20)

for k=2 and N-1 respectively. In each case, the center points
determined by (17) lie within the interval number k because the
blending values in (18), (19), and (20) are strictly between 0 and 1.
The remaining coefficients are for the end points. For the first end
point, the function strictly decays from a positive value at the end
point to zero at the first partition point. For the last end point, the
function strictly increases from zero at the next to last partition
point to a positive value at the end point.

From the description of the coefficients, the domain over which
each is non zero is readily apparent. By including interval end points
as well, there are then some points with zero values but there is
also a simpler statement that has the essential information. Thus,
with this inclusion, the domains are given by the closed sets

support(Xk) = { l k-2-< <- k+1 ) ( { 1 41< 4 ! _4N-1 (21)

for k=1,2, ..., N. The support of a function as in (21) is defined to be
the smallest closed set which contains the set of non zero values.
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Since the grid on the curve comes from the transformation (16)
applied to a uniform grid on the parameterization, the respective
supports of the coefficient functions give the respective grid points
that are influenced by each coefficient function. Thus, if only one
control point is moved from some initial configuration, then the
support is used to identify those points which must be moved.
Moreover, to identify the most strongly affected point, the center of
the corresponding coefficient (17) is computed and the closest grid
point (or points, if it is precisely between two) is taken.

Uniformity

Up to this stage, the issues have been placed upon how to
generate curves with strong shape control and upon how to ascertain
the local extents of such control. The next issue is to address the
distribution of points along the generated curve. The main question
here is how to determine a uniform distribution of points along the
curve. While this could always be done, to some degree, by a
subsequent arc length reparameterization; such a
reparameterization would acquire non-uniformities in a given
direction as the curve experiences continual direction changes. In
addition, the reparameterization would require additional work. By
identifying the given direction with a vector r, a consistent measure
of uniformity can be established and applied quite simply. This is
stated by the projected arc length measure

SA = P( ) -P(O "(22)

where typically

= (23)

The condition for uniformity is then stated by the requirement
that the projected arc length be linear. Using the basic form of the
multisurface transformation (10), the projected arc length is given
by

N-I Gk()

= (24)

in terms of the successive projected distances
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dk = (Pk+l -Pk} "T (25)

between control points. Since the it is the interpolation functions
that satisfy a kronecker condition (3) rather than their integrals,
there is a motivation to consider the derivative of (24). This will
represent a uniform pointwise distribution when it is a constant. It
is given by

N-i
S'(r) W) dk

k=i GkAN-1) (26)

and, with the kronecker condition, the summation reduces to only
one term upon evaluation at the (i)th partition point. Uniformity is
satisfied when the derivative equation (26) is set equal to a
constant c. The uniformity conditions are then given by

c= Sp )= i(i d

Gi( N-1) 
(27)

With a substitution from the definition of the interpolation
functions in (11), (12), and (13), the integrals (6) in the denominator
are 1 and (27) leads to

jr2 for i=1

d = 2i+1- ;-1 for i=2,3," ,N-2

N-l - .,N-2 for i=N-1 (28)

The most typical direction to consider is the one which is
determined by the end points to the curve. The scaling of this
direction will determine the constant c. By setting

=I PN- PI
11 PN - P1  112 (29)

the constant becomes equal to 2 and thereby removes the factor in
front of (28). To put the condition on a comparable basis of
incremental !engths, it is restated as
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hi for i=1
d = hi-I + hi for i=2,3, --. N-2

hN-2 for i=N-1 1 (30)

where the par;,.ietric lengths

hi = qi+l - i (31)

are balanced against the physical space distances of (25).

When the partition points are chosen to be uniformly distributed,
the interpolations functions (11), (12), and (13) at these respective
points are simplified to the extent that each interior one is a rigid
translation of a single function. Even the boundary functions are
represented by the single function with a translation and a doubling
of its height. As with any specification of the parametric intervals
between the interpolation points, the uniformity condition (30) is
addressed as a constraint upon the placement of the control points.
The uniform parametric intervals then imply that for each i, the
equation (31) has a constant value h. The specific condition from
this choice means that the distances (25) are chosen so that the
spacing adjacent to the end points ( h ) is one half of that in the
interior ( 2h).

The Attachment of Control Points to a Given Curve

When an arbitrary curve is given in a parametric form, it can be
viewed as a transformation from the parameter space to the
physical space in which it appears. As a transformation, the
objective of attachment is to essentially reproduce it by using the
transformation in terms of control points (16). This amounts to an
approximation of both its geometry and pointwise distribution. The
accuracy in this process is usually quite good for a modest number
of control points and is, of course, enhanced as the number of
selected control points N increases.

In terms of the pointwise distribution, the starting condition is
with a uniform distribution in parameter space. Any non-
uniformities along !he curve are then the result of applying the
given map to the given curve. Accordingly, if the map is to be
reproduced, then the uniform parameter space must first be
reproducible. Given any number N of control points, this can be
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accomplished by placing the control points in the parameter space in
such a manner as to satisfy the uniformity condition above. In the
case with equally d';tributed interpolation points, the N points
determine N-1 lengths of equal size; thus, N-2 interior lengths of
equal size and a half length for each end by splitting the remaining
one. If the interior length is 2h, then the lengths for the ends is h
where

h N-1 -42(N - 1) (32)

Once the control points are placed in parameter space, the most
immediate approximation is then to send those control points into
physical space by applying the given curve defining map. If the curve
is a uniform straight line segment, then the attachment should be
exact since the projected arc lengih is along the actual curve and
since the distribution is linear. That is for a given curve

=- (- )a +(4-41)b /N- 14 1-4 33)
we get

=( (34)

for the transformation P in (16) when

P1 = ( )= a

P2 
= Y('1 + h)

P3 
= Y(ID1 + 3h)

PN-I = y( I + 2(N-2)h)

PN = 7(41 + 2(N-1)h ) = Y(4N-1) = b (35)

When the linear curve of (33) is replaced by an arbitrary
continuous curve, the control point sequence of (35) leads to a
transformation (16) that is an approximation to the given curve Y.
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The approximation is typically quite close for even modest numbers
of control points N.

The error of approximation is due to the effect of curvature. This
occurs because the control point determination by mapping (35) does
not account for the direction changes in the curve. To witness the
effect, the curve can be viewed as a succession of curved segments
that are separated by inflection points about which the changes in
concavity appear. That is the separation is into segments with non
zero curvature. If, for example, the approximation is considered
within such a segment, then the control point curve is seen to lie on
the concave side of the given curve. To account for curvature in this
case, the control points must be lifted off of the given curve and
displaced in the outward convex direction in an amount that is just
sufficient to drag the associated control point curve closer to the
given curve. The measure of closeness can be given in a number of
standard norms and various strategies are possible for an associated
optimization process. These procedures can also be expected to
extend to sections including inflection points.

Up to this stage in the discussion, the given curve is represented
in an analytical form. In practice, the more general approach is to
assume the curve 7 to be given in the discrete form of a grid:
namely, it is presented as a sequence of points in physical space.
Without loss of generality, the sequential index can be taken as the
parameterization. As such, it is then viewed as a mapping from
index space into physical space. With the indices being mapped onto
their corresponding grid points, the parameter values between
indices are most simply defined to be mapped in the local linear
fashion using the closest index locations. These are determined by
directly finding the greatest integer part of the parameter value,
taking the amount beyond it, and using that amount for the
proportionate distance in the linear interpolation between
associated grid points.

The generality in the grid representation is readily seen since any
analytically given curve 7 can be converted to a grid by the mapping
of uniformly spaced parametric points that cover the parametric
domain. This grid and its associated piecewise linear curve
represent another approximation to 7. Accordingly, there is some
associated error. When the attachment process as given by (35) is
applied to determine a control point transformation, the total error
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involved is a composite of both the error from control point
placement on 7 and the conversion from analytic to discrete.

In the prototype code, the attachment process was executed in
the manner described by the pure mapping strategy as applied to
curves and two dimensional grids in the multiblock structure.
Altogether, this is a good first step. However, it is not the end of
the story. Quite simply, the process must be improved to include the
effects of curvature.and to generally enhance the accuracy. This
suggested improvement has been reserved for Phase I1. The benefit
will be seen most directly for 2D grids when strong clustering is
required at a specified boundary that is highly curved. Without this
enhancement, the attachment by mapping only will lead to an
overlapped grid. A situation that demands strong clustering in the
presence of high curvature can be expected to commonly arise in the
solution of the Navier-Stokes equations.

The Basic Transfinite Interpolation Process

The generation of a curve that connects two end points is an
example of a uni-directional construct: the direction of construction
being only along the curve. When such curves are assembled to form
a family of coordinate curves, the construct is still a uni-
directional one. The directional parameter is identified by the
curvilinear coordinate variable that is the parameterization for each
coordinate curve in the family. The unidirectional constructs are
characterized by their very nature in which the only real
specifications of data occur at fixed stations of the corresponding
parameter value. In the simplest case of straight line constructs,
the specification is just the end point positions in space. When
these straight lines are smoothly assembled to form a coordinate
system, the end point specifications become curve or surface
specifications. The result is called a shearing transformation.
The clear defect in this process is the fact that there are no real
specifications in the remaining coordinate directions that were
inherited from the specified boundaries. To correct this defect, a
further process is needed to assemble these directional constructs
in such a manner as to conform to specifications in more than one
direction. This process has been called trans fin it e
interpolation.
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Transfinite interpolation is most simply described by
demonstrating it for shearing transformations. In two dimensions,
there are two shearing transformations that can be stated as

At ,n)=(I- )P(0,7)+ 4 P(1,Tl) (36)
and

B(,T ) = (I- T) P(4,O) + T I (7

for the respective t and 71 coordinate directions which, for
simplicity, are taken over the unit domain

0<_ <1

05 _< r< 1 (38)

The fixed stations for (36) are for equal to 0 and 1 and are
represented by the respective specified boundaries

P(O,q) and P(1,l) (39)

However, when 71 is equal to 0 and 1, the shearing (36) gives straight

lines rather than the more general specified boundaries.

P(4,O) and P( ,1) (40)

With the shea,-ng in the fl-direction (37), the specifications are
reversed. The specified boundaries are given by (40) while the
lateral boundaries are given by straight lines rather than (39). Since
the lateral boundaries of the shearings (36) and (37) together
represent a linear rendition of each boundary, the natural inclination
is to develop the transformation which produces linearity at each
boundary. Clearly, the corner points are all that is required. These
represent the intersection of the edges. This transformation is
given by the double shearing: namely, to shear with (36) between the
corners defined by 11 equal to 0 and 1 and then to use these straight
line results in place of (40) in the shearing of (37). The order of the
double application of shearings can be reversed by employing (37)
first and then (36). The result is the same. It is called the tensor
product transformation and is given by
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TO = (1 -0 1-q)P(O,O) + 4 -q)P(lO) + (1-4 P(O,1) +47P(l,1) (41)

where the corner points are explicitly blended into each other. The
specification of all boundaries, however, requires an interpolation
of the union of edges rather than the intersection as given by the
tensor product. By returning to the directional shearings of (36) and
(37), their vector sum (A+B) contains the fixed stations for
boundary specifications at all boundaries, but also contains line
segments as well. That is, the evaluation at the boundaries reduces
to the vector sum of the position vector for boundary specification
and the position vector for the straight line segment that connects
the corners corresponding to the end points. Since these straight
line segments appear at each boundary and are also produced by the
tensor product transformation T of (41), the transformation which
conforms to all boundaries is obtained by a subtraction of T from
the sum A+B and is given by

P = A+ B-T (42)

which defines the position vector P everywhere throughout the
domain (38) from its specification along the entire domain boundary.
of (38). Because this represents an interpolation of the entire
boundary which can generally be given as a continuum which then
involves an infinite number of points, it has been called a
transfinite interpolation to reflect the possible infinity of
points in comparison to the finite set represented by the corners for
the tensor product. In terms of the boundary point specifications,
the tensor product (41) and transfinite transformations (42)
respectively interpolate the edge intersections and unions. In a
more general manner, the shearing transformations can be viewed as
separate projections from the class of all transformations that
conform to the opposing boundaries to the specific choice of the
shearing. This requires some extra notation to accommodate the
projectors, but the essential features follow the same pattern as
given here. In the notation of projectors, the tensor product
transformation (41) and the transfinite transformation (42) are
called the Boolean product and sum respectively. The use of
projectors extends well beyond the specific choices of assembling
shearings. The general feature with union and intersections still
holds. The Boolean products and sums respectively correspond to
conformity with the intersections and unions of the associated
objects. Those objects, in our illustration were only the edges. This
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general format provides the framework to proceed with the
assembly of multisurface transformations.

The Basic Control Point Form of Algebraic Grid Generation

The control point form of algebraic grid generation is given here
first to delineate the basic structure from which the more general
bottoms-up self consistent formulation will be presented for
multiblock application. The basic CPF is obtained from the Boolean
assembly of multisurface transformations. The assembly is done in
such a manner that the control rests with a sparse array of control
points rather than an intersecting network of complete control
surfaces. The latter would arise from the rather straight forward
application of the transfinite procedures. It would also present the
burden of more data to manipulate as well as other problems.

The constructive elements of the CPF are the control point array,
the interpolation points, the associated blending functions, the
specified boundaries, and the switches for boundary specification.
With the exception of the last stated element, these are now to be
given a notational designation. The control point array is given by

I Qij I i = 1,2,.-., I and j=1,2,...,J ) (43)

The vector field interpolation points (4) for the multisurface
transformation (10) are given by the partitions points

T11 < T12 < "". < Trh -1 (44)

the associated blending functions (16) are designated by

cz(A) for i = 1,2,... j

PPI) for j = 1,2, ... ,J (45)

and the specified boundaries are stated in previous manner of (39)
and (40) as
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P(, 1) P(4,rlj-i) for 1 -

P( I) P(41 171) for flI I Tl <- IJ-1 (46)

The construction starts with the creation of a control point curve
(16) for each row and column of the control point array (43). These
curves will lead to the tensor product T and to the directional
transformations that reflect the A and B in (36) and (37). These are
generated as

a = aA) Q1
=1 (47)

for 1=1,2,..... J and

J

j=1 (48)

for = 1, 2, .... I. The tensor product is computed by using the
curves in (48) for constructive surfaces as

=T( ,Tj) a j[(4() bi(TI)
i~l (49)

or, alternatively, the curves of (47) as

J

*T(,) = I 13j(T)aj( )
J=1 (50)

which each reduce to the symmetric formula

I I

= i (51)

that shows the invariance to the order of assembly: that is, the
commutativity of ;this process. By viewing the tensor product as
coming from the constructive surfaces of (47) as in (50) and of (48)
as in (49), the evaluations at the boundaries are readily seen to be
given by
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T(r-1,r) = b 101) T(tl-ijr) = bi(TI)
T(',Tl) = a,(') T(4,,'j-,) = a(52)

since each multisurface construct matches its boundary (5), (7).
This result simply states that the tensor product transformation
reduces to a control point curve at each boundary

The tensor product transformation, like its simpler counterpart
in the case of shearing transformations in (41), does not utilize the
data for specified boundary edges: it is only dependent upon the
control point array (43). It now remains to develop the directional
constructs which include the missing boundary data and correspond
to the previous A and B of (36) and (37). This is obtained by
adjusting the multisurface assembly of control point curves to get
the tensor product. The adjustment comes from a replacement of
control point curve boundaries with the associated specified
boundaries. The pertinent modification of (49) then becomes

I-1

• .\(,') = (o 1 -:1)P ,) + ai ( )bi(Tl) + r(() P(4-1,l)
i=2 (53)

and, similarly, the other direction (50) becomes

J-1

, :{31() r( ,n) + I 3(0)a ) + A.r') P4,fli-i)
j= 2  (54)

Because the intermediate control curves are, by construction, the
control point curves used to develop the tensor product in their
respective directions, it is reasonable to complete the
corresponding summation in the middle of (53) and (54) to cover the
full range so that it becomes the tensor product. In so doing, the
boundary control point curves are added into the summation and are
balanced by their subtraction from the first and last terms on each
end. The result is a tensor product for the center term and the
remaining terms being the boundary blending terms. In the first
direction, the transformation of (53) becomes

A(E, I) = T( ,rl) + cc (I )P(4 1,T1) - b,(Tl)) + ao(4) (P( 1.-,,Tl) - b1(T) (55)
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where the last two terms are the boundary blending terms.
Similarly, the transformation in the other direction becomes

B(,,,,l) = T(5,l) + PI(n) (P(;,Ti,) - a,( )} + 3j(71) P( ,rl_,) - ai( ) (56)

Altogether the boundary adjustment terms appear as a difference
between the specified boundary P and a control point curve which is
scaled by the multisurface blending function at the corresponding
boundary. Since the control point curve at each boundary is
determined by the corresponding boundary control points from the
array (43) and since that represents just an evaluation of the tensor
product T, these directional multisurface constructs can be
expressed entirely in terms of the specified boundary and the tensor
product. That is using (52), the directional constructs (55) and (56)
are now written as

A(r,Ti) = T(Iql) + al( ) I1( ,rl) + ca(,) H(4i-1,q) (57)

and

B( =,l) T('-,T) + 3(rl) H(4,TrI) + P3(r,) H(.,j _13 ) (58)

respectively where

1i = P- T (59)

is the is the difference between the general position vector and the
tensor product which, here, is evaluated at only the four boundaries.
With these directional constructs and the tensor product, the next
step is to assemble the pieces in the transfinite manner (42) of

P( ,Tl) = A( ,rl) + B(4,rl) - T( ,Tl) (60)

This yields the basic control point transformation and is given by

P(4,11) = T(4,Tl) + PI oal(4) H(4If1) + P2 (X() H(4 1-1,1)

+ P3 PI(Tl) H(4,T11) + P4 13Pj(l) H( ,lj-.) (61)

where an extra coefficient has been added to each boundary
adjustment term. These are denoted by Pk for k=1,2,3,4. and act as
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switches which turn each boundary blending term on or off in
correspondence with the values of 1 and 0 respectively.

The derivation, here, has deductively lead to the form with the
values of 1. Upon inspection of the deductive result, the
interpretation of the boundary adjustment terms has lead to the
generalization to include the switches. The interpretation is that
the each adjustment term acts individually for a particular
boundary. The other boundaries and the tensor product core remain
the same. Thus, by dropping an adjustment term, the blending from
the specified to the control point representation is simply removed;
thus, leaving only the tensor product for the given boundary which
,of course, is only determined by the boundary control points.

The Bottoms-Up Representation For The Topological Stencil

In the basic control point form of the previous section, the
specified boundaries appear as arbitrarily given entities. There are
simply no restrictions as to how those boundary grid points were
generated. While this is certainly a general statement, there is also
no flexible means offered to model such boundaries. That modeling
issue is addressed in this section. Accordingly, the control point
form of algebraic grid generation will now be extended to include
the boundary modeling capability. It is done in a self-consistent
manner which is a very flexible bottoms-up approach. The self
consistency comes from the use of the same mathematical
machinery for the purpose of boundary modeling. The bottoms-up
philosophy connotes that we start from the simpler objects and
build up to the more complex ones. Thus, from points, the curves
including boundaries are generated, and then from such curves, the
two dimensional coordinates are obtained. In addition to the
geometry modeling, the benefits of this form include the format for
actions that utilize storage compactness and a ready means to
perform the assembly of coordinate patches into a multiple block
configuration.

With the use of the same mathematical structure for the boundary
grids, the notation for the associated curves is most conveniently
taken to parallel that of the development for the two dimensional
grid patch. In the i-direction, the two boundary curves are
distinguished by k=1,2 and are given by
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uk( ) a k( ) rk

1=1 (62)

for control points

ir I for i= 1 , 2 ,...,lk ) (63)

and blending functions °k) as in (16) defined over the partition of
multisurface interpolation points

.1 = -' k < r k < . . < : _ k [ !( 4

where the parametric range matches that for the area grid
generation, but has a generally larger number of points. The
disparity in the number of control points occurs because the
boundary modeling is typically more detailed than is required within
the area grid. Thus, the richer supply of control points can be
brought to bear upon the more rigid boundary requirements without
having to be propagated into the area. With similar considerations
the boundaries in the j-direction are given as

Jk

VkT - p k(Tl) Sk

(65)

for control points

sk for j=1,2,...,Jk ) (66)

and partition points

1, 2 J < < .< kI =qm- (67)
k kk

with blending functions 13(i) of the form in (16). With the boundary
specification given by

P( ,qI) = ul(,) P(fj-l) = u'( )

P( 1 ,rl) = v1 (Tj) P(4 1 _,rl) = v 2 (Tl) (68)
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the self-consistent control point form of algebraic grid generation
is given by

P(rTl) = T(4,T1) + P, ct() '(vi(f) - T( Ijj)}
+ P2 oXAi( )v2(71) - T(,_,,q)}

+ P3 P 1(rM) (u1(4) - T(.r1)}

+ P4 J3I(ri) (u2(4) - T(4,rlj-,)) (69)

in the bottoms-up manner.

The topological stencil in the prototype 2D multiblock code was
given in terms of the edge control points. This was established by
first having the user specify vertices from which the starting edges
were generated by lines such as (33). Then the attachment process
was applied to produce initial edge control points. The user was
only required to specify the desired number of control points. Then
from the initial control points the action shifted to their
manipulation by movement so that the boundary edges can be
modeled into the desired shapes. From the edges, the prototype code
was then structured to generate the area grids for each coordinate
system in the topological template of edges. Altogether, the
structure follows the mathematical formulation derived here for
this purpose.

The Computational Speed

The application of the control point form of algebraic grid
generation can be executed in a particularly rapid manner during the
process of interactive grid manipulation. The speed, here, is
substantially greater than that of a straight forward application.
The process by which the computational speed is improved for the
dynamic manipulation process rests upon the localization of the
computations and the computation of only the changes in the grid.
This latter aspect is considered first. The starting condition was
obtained by generating the initial control point grid with the
optimization to the extent of utilizing the local analytic structure
While this is faster than the straight forward computation, it is
still not as fast as the process which is based upon the computation
of changes. Fortunately, the requirements for speed at the
initialization stage are not as great as that during the dynamic
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manipulation stages which comprise the bulk of the interactive use
of the code..

Given the initial starting grid together with its control net, the
main subsequent action comes with the change of position of a
control point or group of control points. Accordingly, it is
reasonable to compute only the changes in the grid point positions
that are influenced by the altered control points. While this
represents a clear savings that can be seen from the supports of the
control point coefficients as stated in (21), a further savings was
obtained by employing the previous known grid.

The strategy was to compute the difference between the new and
old grids and then to add this computed difference or "delta form" to
the old grid. This will be discussed first for the area control points
and then for the edge control points in the bottoms up formulation

The Delta Form For Area Control Points

For a change of position in one of the area control points (43), the
delta form can be computed with either the CPF stated in (61) or in
(69). In either case, the boundary specifications cancel out with the
result that is expressed as

= AT(,,Tl) - P, cjx(4) AT( 1 ,f) - P2 a1l(4) AT(4I_1 ,rl)

- P3 I3i(1) AT(4Tj) - P41 3j(l) AT(4TrjI) (70)

where

AP = pnew - pold (71)
and

AT = Tnew - Told (72)

Of the area control points, there are three cases to consider for
movement. They are the respective motion of corner, edge, and
interior control points. The corners will be examined first. It is
sufficient to look at the action for a typical corner. Thus, consider
the motion of the corner with i=1 and j=1. If only that point is
moved, then its delta is non-zero which is stated as

AQij=O when i* 1 andj 1 (73)
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but
AQ11  0 (74)

where
AQ = new QOldA ij - ij (75)

Next, the general delta form of (70) must be evaluated. Clearly,
the boundary terms which do not involve the (1,1)-term disappear.
This removes the second and fourth such terms. The remaining
tensor product delta's involve the change of (74). These are
computed from (51) as

AT( ,Tl) = a ( T () AQl

AT(',l) = aL1(4 1) 131(T) AQ1 = 13 (71) AQl1

AT( ,r1) = ai( ) 13(11) AQ11 = oix( ) AQ1, (76)

When these delta's are inserted into the general delta form of (70),

the form reduces to

AP = (0 - PI - P3) C1( ) 131(r') AQ11  (77)

If either both of the boundaries that contain the common corner are
considered to be specified, then both of the switches are on and the
corresponding values of Pi and P3 are unity. The delta in this case is
negative in correspondence to one plus from the tensor product core
and two negatives from the boundary adjustment terms. When one
boundary is considered to be specified and the other to be
determined by only area control points, then one switch in 0 and the
other is 1. The result is then a direct balance of the tensor product
core versus the one alive adjustment term. This leads to no
movement at all! : the grid is invariant. The last possibility is for
both boundaries to be considered to be determined by only area
control points. In this instance, there are no adjustment terms for
boundaries and accordingly, as expected the delta comes entirely
from the core and is a positive contribution. To get the new grid
positions, the computed delta is added to the old grid point positions
according to the formula

pncw = pold + AP (78)
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For this corner point motion, the computation is localized to the
grid points influence by the new corner point position. The effected
points are determined by the domain of influence of the coefficients.
With the support as given in (21), the effected grid points in this
instance are those which correspond to the curvilinear section of
the blending support given by

TI I T1 < T12 (79)

Thus, the delta is non-zero only in this subdomain and, as a result,
the grid remains unchanged outside of this local region: that is the
application of (78) is only a very local one.

While the corner points belong to two edges and technically can
be considered as edges points, the edge points for this discussion
are purely internal to the specific edge under consideration.
Accordingly, the area control points which lie on edges lead to a
delta form that has only the boundary adjustment term belonging to
the single specific corresponding edge For example, if only the area
control point in the (1,2)-index location is moved, then the delta
form of (70) reduces to

AP( ,, ) = AT( ,Tl) - P, a,(') AT( I,rl) (80)

With

AT() ,T1 )= U () f32(rT) AQ12 and AT( 1 ,Tl) = 132(1) AQ12  (81)

the delta becomes

AP = (I - p) c() 32(0l) AQl 2  (82)

to give the new position

pnew = pold + AP (83)

If the boundary is considered to be specified, then the delta is zero
because its leading coefficient (with the switch turned on) vanishes.
In effect, the tensor product transformation is experiencing the
change but that change is not appearing in the CPF because the
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boundary adjustment action provides a precise balance which
annihilates it. That is, the C PF is invariant while the tensor
product is changed by an arbitrary amount. This arbitrary change is
seen when the boundary is not specified for then there is no
balancing adjustment term and the action is solely that of the
tensor product core. The leading coefficient in (82) is then unity.

The remaining possibility to consider for area control point
motion is the more standard motion when the moved point is
completely interior That is, it is not on any boundary, be it a
corner or an edge. In this case, the boundary adjustment terms do
not appear since the associated deltas depend solely upon the
control points along the boundaries. Thus, the delta form comes
from the tensor product core, and in particular, from the term in
(51) which has been changed. Accordingly, when only the control
point at the internal index location (i,j) is moved, the new position
becomes

pnew = pold + Orai() p3j(n) AQij (84)

The Delta Form For Geometry Modeling Control Points

The next consideration is for the motion of the control points
that are associated with the boundaries in the self-consistent
bottoms-up formulation. These are the geometry modeling points.
With the assumption that the motion is restricted to only the
geometry modeling points, the delta form is computed as in (70)
from a difference of CPF's; but this time, the CPF is restricted to
the self-consistent one of (69). In contrast to the situation with
the area controi points, the action is totally contained within the
adjustment terms; and moreover, within those terms, it is the
tensor product which is cancelled out in the delta between new and
old. This also changes the sign of each adjustment contribution
since it is a delta between positive rather than negative terms
which contribute. To witness the effect in concrete terms, it is
sufficient to examine the movement of a single specific point. Thus,
if the third modeling point on the third boundary of (69) is moved to
a new location, then the delta is given by

AP = P3 0101) (Aul( ))

= P3 N(71) (C( (85)
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where the modeling control point is explicitly given from using (62).
The new position is given by

pnew = pold + ( )13i(f)Ar (86)

where the switching factor was taken to be unity since the boundary

motion has an effect only if the boundary is considered as specified.

The Motion for Groups of Control Points

With the motion described for individual points that are
associated with various parts of the area or boundary modeling
control, the motion for groups of control points is the next practical
consideration. The simplest instance of such group motions are
those cases where several points are tied together in the sense of a
common usage. In the case of boundary modeling points, the end
points of curves lead to the natural inclination of uniquely defining
corner points. For example, in the (1,1) location, the first and third
curves should come together. In the spirit of (86), there are two
delta contributions that together lead to

pncw = poid + ot'( ) 13(T) Arl + (c,( ) PIa(T) Asi

I pd + I ( + a ( ) 10(7)] Ar1 (87)

where the last equation represents the identification of the corner.
Moreover, when the area control point for the same corner is also
identified, yet another adjustment term must be included. This, of
course, is quite natural to consider and represents a transition from
the uniqueness with respect to only edges to a uniqueness that is for
the entire CPF. With (87) and (77), the unique corner motion is then
given by

pnew = pod + [I( ) (TI, ) + a,( ) 131(1) - Cc( ) P(O)] AQ11  (88)

In the event that an edge modeling point can be identified with an
edge control point for the area, the possible joint movement can be
considered. In so doing, however, the grid is determined in the
direct manner of a pure motion of the modeling point as in (86). The
contribution of the area control point is zero because it vanishes as
in (82) when the boundary is considered to be specified.



29

Up to this stage, the various special cases have been examined.
These included the corner, edge, and internal points for the control
net over the area; the edge and corner points for the separate control
nets over the boundary curves; and the instances when there would
be possible coincident points among these nets. In the special
cases, the distinct actions were assembled in an additive manner.
This was possible because there is linearity with respect to the
control nets. In a larger sense, the linearity leads to a general
superposition principle whereby the motion of a group of control
points are viewed as a sum of individual changes that are added
together to obtain the change for the group. Accordingly, with the
knowledge of the various possible special cases, the general motion
of groups of points is then determined by the superposition of the
associated deltas for the special cases.

The Number of Computed Grid Points

Once the group of control points to be moved is identified, the
next issue for optimization, is the determination of the domain of
influence for the group so that the number of computed grid point
locations is minimized. That domain is just the union of the
separate domains for the individual points. However, the
optimization requires the appropriate care to avoid the potential
repetitive calculation due to the overlap of the domains for the
control points within the group. Altogether, a strategy is needed to
compute the overlap points only once. When the group pattern is
rectangular, the domain of influence is readily identified. It is
simply given by the minimum and maximum of the respective
domains for the associated blending functions (21) in each direction.
This is obtained from the functions on the perimeter of the group. In
the instances where the group is randomly scattered, the
optimization is more complex and was not considered.

The Localization of the Computation for the Initial Grid

When the CPF is being applied to generate the grid for the first
time, a reduction in the computational effort comes from the
localization of the summations. The summations are those
from the curve generation process which, in the subsequent
assembly, were spread throughout the CPF. For the computation of
any new grid point position, there is a pair of curvilinear coordinate
values. Associated with these fixed values are the respective
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blending functions which do not vanish. It is then clear that there is
no need to compute those terms where the blending function is zero.
That would simply be wasteful. The consequence, is then to limit
the summation. In terms of a single curve (16), the summation is
simply given new lower and upper limits which start at the first
index associated with a non-zero value and end at the index for the
term with the last non-zero value. Altogether, this represents a
maximum of three terms for each evaluation. Most of the
evaluations occur at this maximum.

With a maximum of three terms for the evaluation of each grid
point, there is then a factor of about three times the effort to
compute the change in a grid point position by the delta form. In
comparison, however, the delta form is applicable only when a
previous CPF grid is known. In an intuitive sense, two thirds of the
data that would have been computed is already contained in the
previous grid and is directly utilized in the delta form approach. The
computation of the initial grid, by contrast, does not generally have
the any previous grid to utilize; and thus, the computation must
generally be done from only the control point data along with any
arbitrarily specified boundaries. The only notable exception occurs
when the attachment process is applied to an arbitrarily given grid
and the resulting approximation to that grid is sufficiently accurate
to warrant the direct utilization of the given grid in place of the
CPF grid for the role of the previous grid.

The Localization of the Graphical Operations

The basic interactive graphical template requires the display of
the block frame elements, the control nets, the grids, and numerous
highlighted positions for user actions. The most consuming of the
associated graphical objects are the grids. The reason is because of
the much greater detail involved. That is, while all of these basic
objects are assembled with various moves and draws, the grids
simply involve more of them. Thus, there is a motivation to localize
the graphical display of the grids.

The graphical localization of grid display can only be done once
there is an object to display the entire grid. Thus, there is no
savings in getting the first grid in view. However, once the first
grid object is available, the local changes in the grid can be
displayed by employing local graphical objects. The procedure is
described in the stepwise manner as follows:
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(1) Identify the local grid points that have new positions
(2) Create a local object for the old grid points
(3) Change the color to the background
(4) Call the object of (2) to create a hole in the grid
(5) Delete the object of (2) to save storage
(6) Create a local object for the new grid points
(7) Change the color to the grid color
(8) Call the object of (6) to view the changed grid
(9) Go to (1) for further local displays

The tradeoff in efficiency occurs when the size of the global
graphical object is twice that of the local one. This is the break
even point because the detail in the creation of the global graphical
object is the same as that for the creation of two graphical objects
of half the size. The two objects are for the creation of the hole in
the global grid and then for the filling in of that hole with the object
for the new local section. In most instances, however, the local
object is substantially smaller than half of the globally one; and
accordingly, the associated gain in efficiency is substantial.

While the local graphical scheme has provided a good increase in
operational speed, it still needs improvement. In its current form,
an additional new graphical object is created in each cycle. That
occurs because, in each cycle, two local objects are created; but
only one is deleted. As a consequence, the consumed storage due to
graphical objects grows as the interactive manipulation progresses.
Accordingly, it is reasonable to reset the situation by the
regeneration of the global grid after a selected number of cycles.
With the reset, the collective local grid objects are simply deleted
and replaced by the new global grid object. The point at which a
reset is necessary is determined by the amount of available storage
for graphical objects. Thus, when the new local grids are generated
by the push of a button, the accumulation of the local objects occurs
at a reasonably slow rate as to not be much of an inconvenience.
When the local manipulation is to be done dynamically in the sense
that the new local grid evolves continuously with the control point,
the object storage problem must be addressed.

The Prototype Code

The mathematical and graphical schemes for increasing the speed
of operation that were developed as described above were also
demonstrated in the prototype code. The code was executed on
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various problems to generate grids and the operational response was
seen to be substantially improved over that of the more direct
approach in the earlier codes.

The Treatment of Boundaries

The treatment of grid boundaries represents the fundamental
means by which the solid objects in a field are described and the
individual regional grids are assembled into a multiblock structure.
The grid boundaries for the solid objects can be given either in a
fixed manner or in a moveable manner which is constrained to lie on
the pertinent object. The remaining grid boundaries are
transmissive. These are either an unconstrained free boundary or
one which is joined to another grid. These latter juncture
boundaries are those which are used to glue the individual regional
grids together to form a multiblock structure. A reasonable level of
continuity at the junctures is typically desired. Without it, the
burden of special numerical treatment is then required when the grid
is utilized for a simulation. Moreover, when the solid boundaries can
be mixed with transmissive boundaries, the number of blocks in a
multiblock grid configuration can be greatly reduced. This
translates into a more concise and simple grid for a simulation.
Altogether, these basic elements of boundary treatment were
examined and tested in the prototype code

While the basic treatment for solid boundaries and their
manipulation is given by the CPF in (61) and (69), the grid spacing
and angles at the solid boundary are determined by the adjacent
layer of area control points within the block. The substance of this
angle and spacing control comes from the curve generation process.
In particular, the main control is with those control point curves
that enter the given boundary just after passing through the extra
layer. The transverse forces are the secondary forces and are
represented by the specified boundary, the boundary control point
curve, the curve represented by the adjacent layer and the
connecting boundaries on either end of the given boundary.. This
assumes that there is sufficient distance from the connecting
boundaries and that the attachment process in the control point
initialization has provided a good control point approximation; for
otherwise, there could be a shearing effect arising out of the
boundary blending action. The shearing effect would require a
compensation before the main action could be enforced. In addition,
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there is also the assumption that the boundary section under
consideration has no slope discontinuities. Such discontinuities do
not provide a unique curve tangent direction relative to which an
angle can be specified.

With these assumptions, the main action can be witnessed by an
examination of a single control point curve such as given in (16).
For the single curve, the angle control comes directly from the
definition of the vector interpolation in (2) and is executed by the
correct alignment of the control point adjacent to the end point in
question as in (9). The determination of the spacing of the first grid
point from the end requires the derivation of the correct spacing for
the adjacent control point. Unlike the case with the angle, the
analytical form of the curve does not provide enough.information.
The number of grid points , m, is also required. From the first end
point, the first increment of arc length, s, is given by the
approximation

(As)l I P'(' 1 )II A (89)

where

A N-I '1

M- 1 (90)

With the derivative of (10), the increment becomes

(As), = V(Ol) .11P 2 - PI 1i N-I - 41

GI(4N-1) \M-- (91)

which, from (11) becomes

(A) ( N- 1 '~ 2 11P2 -PI 1 1(M-1 2- I (92)

The first factor in (92) represents the grid point density from
parameter space while the remaining part looks like a finite
difference. Altogether, with a specified grid point spacing, (92)
yields the control point spacing as
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- (m - (2- ) (As) 1
2 ( N-l - ,1) (93)

which determines the second control point once the angle is known.

The determination of suitable junctures between boundaries can
be done in a number of ways. The most basic action is to arrange the
area control points on either side of the juncture in such a manner
that there is control point alignment at the juncture. Then, when
there is also a matching point density along the juncture, the grid is
automatically continuous across the juncture. By making the
association of pairs of corresponding control points from each block,
these are considered to be tied together in the sense that they
correspond to the same point in physical space. Thus, when a tied
pair is moved, the motion is a simultaneous motion which keeps the
pair as one point. Accordingly, the motion preserves the continuity
of the grid across the juncture.

While the use of tied pairs insures grid continuity throughout the
motion, it does not provide continuity in either the angles or the
spacing across the juncture. The angle and spacing continuity
requires the use of the adjacent layers of area control points on
either side of the juncture. The earlier tie must then be extended
from the pair to include the corresponding control point on each
adjacent layer. This tie of four points in then arranged in a linear
fashion to provide angle continuity. This situation appears as if the
juncture were viewed as a solid boundary from each side. Then by
giving the inclination of the control point linkage in departing from
the juncture, the angle is specified. By matching the linkage angles,
the linear arrangement is obtained. This leaves open the possibility
to give the angle at will.

With the linear arrangement of four points that is centered about
the coincident pair and connects to one point on each side of the
pair, the remaining requirement is to determine the spacing for each
linkage. To provide a basic level of spacing continuity across the
juncture, the grid point spacing was matched on either side. That is,
the spacing of (92) on each side is equal. For notation, let the other
curvilinear variable be X, the other number of grid points be n, the
other number of control points be L, and the other control points be
0. In addition, assume that the juncture corresponds to the first
control point on each side. Then the relationship is given by
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II P2-P II = M-I(XL--zXi)( 2 - )

11 Q - 1 1 V 1_ , X2 Xl (94)

which provides the ratio of linkage lengths, but does not give the
lengths themselves. Altogether, the spacing from the juncture and
the angle through the juncture represent degrees of freedom that can
be exercised in an interactive graphical manner. With (94), the
choice of one linkage length is enough to determine the spacing; and
with the inclination of the linear arrangement, the angle is
determined. In an operative sense, the linkage lengths fix the linear
configuration of the tied points while the rigid motion of the
configuration determines the rest. That includes both translation
and rotation.

The next step beyond the matching of grid point spacing and
angles at the juncture is to account for the rate of growth for the
spacing and angles which pass through the juncture. The
consequence is a modification of the above prescription. For the
linkages, (94) is changed to include a growth rate factor on the right
hand side. As it is stated, the growth rate is unity which means that
the spacing on each side is equal. With angle growth rates, the
linear configuration is changed into a modest bend. Altogether, the
growth rates represent a higher order effect and thus a refinement.
In the execution of a dynamic manipulation, the mechanics of
reconfiguring the tie adds an additional level of complexity. In the
code the accounting for growth rates were not undertaken.

The case of junctures with aligned area control points provides
the most readily applicable means for locally modeling. While the
modeling action is more direct with the alignment which permits
the above four point ties, the initialization of the block structure of
control points requires more effort. Thus, there is a balance
between the places where the effort is expended. For this balancing
option to be available, the means to treat junctures must be
established for the case where there is no alignment of the area
control points that come from each side. Several strategies have
been established for this purpose.

The first strategy is to represent the juncture by a separate
sequence of edge control points and to then employ the bottoms-up
self-consistent formulation of the CPF as given in (69). The
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constraint upon the edge. control points is that the generated edge
grid points are reasonably close to the corresponding edge
representations that would come from the area control points on
either side. This is separated into a closeness in the geometric
shape and in the distribution of the grid points. The distribution is,
perhaps, less intuitive, but is also very important because a
disparity there would enter the boundary blending terms of (69) and
would result in a distortion of angles. The consequence of a greatly
misaligned pointwise distribution would be the requirement for a
rather non-intuitive compensating adjustment of the adjacent layers
of area control points.

With the motivation to select a suitable sequence of edge control
points for the juncture in the first strategy, the existing area
control points that come from either side are considered. They
certainly are close in the geometric sense. To most readily address
the pointwise distribution, it is most convenient to choose it from
only one side. This alleviates the need to carefully choose
appropriate points of interpolation (4). For the most flexibility, the
side with the richest supply of area control points is preferred.
Typically, the richest supply comes from small coordinate blocks
that are appendages to a larger block. As a secondary problem, the
corner treatment must also be done carefully.

Altogether, the entire interface curve represents a tie which
glues the two blocks together with continuity. The continuation, as
with the earlier transition from pair ties to four point ties, the
adjacent layers are then included in the tie operation. The
objective, as before, is to enforce continuity in the grid spacing and
angles through the juncture. While the basic idea is the same, the
pattern of these ties is more complex and varied.

In conjunction with the above first strategy, a second strategy
is needed to obtain spacing and angle continuity. This was done by
employing an overlaid area control net. This third area control net
is designed to cover the juncture as an interior curve and to be an
essentially local net. The sequence of operations is to first attach
the overlaid net, then to generate the local grid which includes the
juncture in its interior, to next attach the area control nets on
either side, and to then generate the grids on either side by using the
one sided approach of the first strategy, but not with any special
ties for the adjacent layers. In a direct manner, the configuration of
the adjacent layers are automatically determined by the attachment
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process. In continuation, further means for adjacent layer
determination can be expected to arise and be best in for certain
actions. Moreover, the extension into additional layers can be
expected to evolve. Such continuations and extensions were not
pursued.

In situations when a block side contains a mixture of solid and
transmissive boundaries, there must be a means to make a smooth
transition occur between the solid and transmissive sections. The
transition is accomplished by extending the CPF by replacing the
switches between specified and free-form boundaries. Those
switches appeared in (61) and (69) with a value of 1 for the
specified case and a value of 0 for the free-form case. While these
constant values are quite sufficient for boundaries of a single type,
they are not for one of mixed type. The straight forward assignment
of 1 and 0 for specified and free-form would lead to a discontinuity
at any point of transition. In effect, the specified side would have a
non zero boundary blending term and the free-form side would not.
The disparity at the transition point would then propagate into the
grid by a distance given by the support of the blending function (21).
To prevent the discontinuity arising from this disparity, the
otherwise piecewise constant function with values of 0 and 1 is
altered to provide smooth transitions between 0 and 1. For each
such transition, the function value at the point of transition is 1
because of the specification requirement. Then, as the free-form
section is entered, the function smoothly decays to 0. As a free-
form region is left, the function simply performs in the reverse
fashion by increasing from 0 to a value of 1. Each transitional step
was given by domain scalings, translations, and reflections of the
simple step function

f(w) = w2 ( 3 - 2w) for 0 _w 1 (95)

where the domain position and orientation appears in w. This
function clearly converts the piecewise constant switching function
into a derivative continuous switching function. Thus, accordingly,
the constant switches Pk of (61) and (69) are replaced with these
functions.

Automatic Features
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The automatic features that were considered are for
orthogonality and spacing along a boundary segment, rubber banding
and sheeting, and global elliptic schemes.

The orthogonality and spacing along the boundaries is
achieved to a reasonable level by adjusting the area control net
linkages from a boundary to be orthogonal and to have lengths
determined by (93). These linkage determinations can be done
separately. The grid spacing from the boundary can be given while
keeping the current grid angles; and conversely, the grid
orthogonality can be given while keeping the current grid spacing. In
each instance, the relocation of the control points, adjacent to the
boundary under consideration, is an approximate solution to a
variational problem. This is due to the fact that there are more grid
points than area control points along the boundary. Accordingly, an
overdetermined situation has arisen when control point movement is
employed to meet the grid requirement for orthogonality and/or
spacing. An analytical statement of the variational problem is not
unique. In a direct sense, it can be taken to be the minimization of a
linear combination of two integrals. The integrand of the first is
the cross metric or some multiple of it. The second integrand is
something like the squared difference between the specified
transverse metric and its desired prescription. The square root of
the transverse metric and its prescription can also be employed, but
is more complex although closer to the spacing itself. To improve
the approximation, an iterative scheme is natural and can be stated
in an analytical form. In a good number of cases, however, the
simple direct movement of each control point on an individual
intuitive basis does provide a fairly good approximation. Only this
intuitive step was taken in the prototype code.

In the case of global elliptic schemes, only the general set up
was considered. The essential strategy set fourth was to choose a
sparse control net and have the initial associated interpolation
functions of (11), (12), and (13) be defined over a uniform partition
(4). Then, by uniformity (30), the starting control point
configuration has half point spacing from the boundaries and full
point spacing in the interior. By the injection of an artificial point
at the midpoint of each interior interval, a sparse grid is obtained
for which each the control net appears in an embedded form. With
the attachment process built in form the start, the movement as a
coordinate transformation preserves the attachment. Then with the
application of any standard elliptic scheme to the sparse grid so
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determined; the movement process is exceedingly efficient because
of the small number of (provisional) grid points. Once the movement
is completed, the control points are extracted and the CPF is then
employed to generate the grid of the desired density.

The strategies for rubber banding and sheeting represent
exceedingly useful tools. They are used when a given control point
is to be moved a substantial distance and would otherwise over run
or greatly separate from neighboring control points. Thus, the
neighbors are moved along a rubber band or sheet which is hinged to
a bounding section of control points and tied to the current control
point at the center of the movement action. For curves, the
operation is called rubber banding and the hinge points appear on
either side of the center point. The action in the prototype code was
with linear connects to the hinges and a progressive tracking of
those connects. The rubber sheeting is the two dimensional
parallel. The neighboring points were taken to be a rectangular
control point section for which the action point appeared in the
center. The hinges were taken to be the control points on the
perimeter of the section. The formula for the movement was
transfinite in spirit, but was constructed to conform to the action
point. With the assumption of a modestly distorted neighborhood, a
rubber sheeting function was constructed in parameter space with
linear connects from a value of 1 at the action point to values of 0
at each surrounding hinge point. Altogether, the sheeting function
appeared as a tent-like function The values at each control point
position in parameter space were then employed to appropriately
down scale the movement of the action point center for each of the
neighboring control points. When the neighborhood is more
distorted, an augmentation to a full transfinite interpolation
procedure would be required. The simplest scheme of this surt is to
use the previous control points to define a discrete mapping; then, to
move the points first in parameter space; and finally, to map ;the
results into physical space. In the prototype program only the first
and most direct approach to rubber sheeting was considered.
Improvements and refinements were left for Phase I1.

The Prototype Code

The initialization procedure that was established contains an
extension of the control point attachment process, several
restarting options and the self-consistent treatment of
boundaries. The self-consistent treatment of bounoaries required
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the creation of schemes for storage allocation and for the
assembly of the basic structural components. The consistency
stems from the utilization of the control point transformation for
both the boundaries and the interior regions. Thus, the
transformation was programed generally enough to apply to both the
block edges and areas. The assembly was done in a manner which
insured that the various blocks fit together with the requisite
continuity to start the control point manipulation process of the
other tasks. The continuity requirement was satisfied by utilizing
the basic theoretic formulation. A simple illustration is given by
the treatment of block edges which are to be transversely attached
to other edges. To start from a given edge, the transverse edge must
indeed leave from a grid point on the actual curve. The need was to
identify the grid point and to put it in relationship with the adjacent
control points for the block interiors. To reflect the self-consistent
structuring, the attachment process was done for both boundary
edges and the interior block areas. This has given two options: (1) a
representation entirely in terms of control points and (2) a
representation where arbitrarily specified boundaries are present.
The restarts were also created with two options: (1) a direct
restart from the constructive data elements of the formulation by
employing only a read statement and (2) an attachment to a given
block structured grid.

The establishment of grid topology was accomplished within
the context of multiple blocks and control points. The compactness
of the control point representation was utilized. That utilization
was most prominently displayed in the sequence of operations. This
was done in a bottoms up manner. First, corner points are set, then
linear connects are given between them, edge control nets are next
attached to the linear segments, and then the control points are
interactively moved to deform the edge boundaries into the desired
shapes. The result is the multiblock frame that represents the
collective boundaries. Then (with the frame) the bottoms up
approach is completed when the areas are filled in with area control
nets and associated grids. The more technical aspects involve the
ordering of operations, the mathematical interrelationships of the
various components, the software development to execute the
mathematical requirements, and the techniques of interactive
graphics.

[he boundary treatment was established for junctures between
blocks and for mixed conditions on edges. The treatment involved
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the ability to locally manipulate the boundaries in a manner which
automatically maintains a good level grid quality. The quality, here, is
to maintain pointwise continuity, continuity in spacing and continuity
in angles. The procedures established for junctures were based upon
setting fourth a local configuration of control points that then were
moved in a rigid fashion. The configuration employed a control point
layer on either side of the juncture. The points on either side were
positioned in such a manner as to insure the desired grid quality. The
configuration was then tied together so that it could be move as a rigid
unit. This was done with the most basic configuration which is the
linear arrangement transversely piercing the juncture. The mixed
conditions were established by applying a blending function (95) for
the boundary conformity terms of the control point transformation.
The effect of the new blending action was to smoothly rnsition from
a precise boundary specification into a free-form represe,,tation that
can be actively manipulated as if it were an ordinary juncture.

The speed for interactive response time was greatly enhanced so
that the rapid application on small personal computers is clearly viable
and would in fact be quite impressive (the current prototype runs on an
IRIS 2500 workstation). The speed was examined for the manipulation
of one control point. The results appeared virtually instantly with the
press of a key (the P key in the code). The elements of the accelerated
computation were the localization of the arithmetic operations, the
localization of the graphical operations, the sequencing of operations,
the balancing between storage and computations, and the fast
evaluation of the transformation from its internal structure.

The automatic features that were established in the code
included boundary orthogonality, rubber banding, rubber sheeting, and
boundary spacing. The orthogonality was accomplished by the
redistribution of the adjacent layer of control points. The rubber
banding was done on sequences of control points that were bracketed by
a hinge point at one end and a moveable point for the other end. When
the moveable end undergoes a displacement, the collection along the
band also does. This was demonstrated in a progressive manner in
which the band need not be immediately a linear arrangement. Rubber
sheeting was done in the same manner but was more complex. The
hinge points were replaced by a surrounding set of control points. The
boundary spacing was handled by using point densities.

Altogether, the prototype code was written in about 2000 lines of
FORTRAN 77. Actually this was the second of two prototypes. The
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first one, however, was restricted to a single 2D block, but was
employed to more simply experiment with the ehancement of the
speed of operation. It was about 600 lines of FORTRAN 77. The
speed enhancement strategy was then incorporated into the
multiblock prototype. For greater flexibility, the codes to be
established in Phase II and III would utilize C and C++. The
flexibility would come from the greater ease of treating general
data structures and the greater modularization that comes with an
object oriented approach. Some plots from the code are displayed
below. They show a basic rubber sheeting and juncture manipulation
operation.
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Grid With Both Rubber Sheeting and Modestly Altered Juncture


